skip to main content


Search for: All records

Creators/Authors contains: "Zhuang, Yanyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Malware detection and analysis can be a burdensome task for incident responders. As such, research has turned to machine learning to automate malware detection and malware family classification. Existing work extracts and engineers static and dynamic features from the malware sample to train classifiers. Despite promising results, such techniques assume that the analyst has access to the malware executable file. Self-deleting malware invalidates this assumption and requires analysts to find forensic evidence of malware execution for further analysis. In this paper, we present and evaluate an approach to detecting malware that executed on a Windows target and further classify the malware into its associated family to provide semantic insight. Specifically, we engineer features from the Windows prefetch file, a file system forensic artifact that archives process information. Results show that it is possible to detect the malicious artifact with 99% accuracy; furthermore, classifying the malware into a fine-grained family has comparable performance to techniques that require access to the original executable. We also provide a thorough security discussion of the proposed approach against adversarial diversity. 
    more » « less
  2. Network intrusion detection systems (NIDS) today must quickly provide visibility into anomalous behavior on a growing amount of data. Meanwhile different data models have evolved over time, each providing a different set of features to classify attacks. Defenders have limited time to retrain classifiers, while the scale of data and feature mismatch between data models can affect the ability to periodically retrain. Much work has focused on classification accuracy yet feature selection is a key part of machine learning that, when optimized, reduces the training time and can increase accuracy by removing poorly performing features that introduce noise. With a larger feature space, the pursuit of more features is not as valuable as selecting better features. In this paper, we use an ensemble approach of filter methods to rank features followed by a voting technique to select a subset of features. We evaluate our approach using three datasets to show that, across datasets and network topologies, similar features have a trivial effect on classifier accuracy after removal. Our approach identifies poorly performing features to remove in a classifier-agnostic manner that can significantly save time for periodic retraining of production NIDS. 
    more » « less
  3. Modern vehicles are equipped with vehicular sensors for smart navigation, vehicle state awareness, and other intelligent operations. Despite the previous belief that the sensor operations stay within a vehicle, as it is designed to be, we study information leakage through the tire pressure monitoring system (TPMS) sensors and the corresponding privacy breach. We demonstrate that, using a low-cost and off-the-shelf software defined radio (SDR), an unauthorized attacker can track uniquely-identifiable sensor IDs up to 40 meters away from the vehicle. To address the issue and protect vehicular privacy, we also propose an effective and lightweight TPMS ID randomization scheme and analyze its security and the implementation costs. 
    more » « less